Neuron resting potential mechanism | Nervous system physiology | NCLEX-RN | Khan Academy | Nejnovější zprávy o sodno draselná pumpa

by Andy Boris

Neuron resting potential mechanism | Nervous system physiology | NCLEX-RN | Khan Academy | Obecné denní zprávy

Přehrát

Můžete si zobrazit další související zprávy sodno draselná pumpa nebo další novinky my podíl

Neuron resting potential mechanism | Nervous system physiology | NCLEX-RN | Khan Academy a související obrázky sodno draselná pumpa

Neuron resting potential mechanism | Nervous system physiology | NCLEX-RN | Khan Academy

Neuron resting potential mechanism | Nervous system physiology | NCLEX-RN | Khan Academy


sodno draselná pumpa a související informace

Vytvořil Matthew Barry Jensen. Sledujte další lekci: Zmeškali jste předchozí lekci? NCLEX-RN na Khan Academy: Sbírka otázek z obsahu obsaženého v NCLEX-RN. Tyto otázky jsou k dispozici pod licencí Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States (k dispozici na stránce About Khan Academy: Khan Academy nabízí cvičná cvičení, instruktážní videa a přizpůsobený výukový panel, který umožňuje studentům studovat vlastním tempem uvnitř i vně Řešíme matematiku, vědu, počítačové programování, historii, dějiny umění, ekonomii a další. Naše matematické mise vedou studenty od mateřské školy ke kalkulu pomocí nejmodernějších, adaptivních technologií, které identifikují silné stránky a mezery ve učení. Také jsme uzavřeli partnerství s institucemi, jako je NASA, Muzeum moderního umění, Kalifornská akademie věd a MIT, abychom nabídli specializovaný obsah. Zdarma. Pro všechny. Navždy. #YouCanLearnAnything Přihlaste se k odběru kanálu NCLEX-RN Khan Academy: Přihlaste se k odběru Khan Academy :.

>>> Obecnější novinky ve všech ostatních oblastech si můžete také prohlédnout na stránce cs.kienthuccuatoi.com
Sdílejte zde

#Neuron #resting #potential #mechanism #Nervous #system #physiology #NCLEXRN #Khan #Academy.

Synaptic Potential,Graded Potential,Depolarization,Neurotransmitter Receptor,Ligand Gated Ion Channel,Leak Channel,Axon,Myelin,Trigger Zone,Nervous System,Membrane Potential,Resting Potential,Summation,Voltage Gated Ion Channel,Electrochemical Gradient,Saltatory Conduction,Hyperpolarization,Action Potential,Dendrite,Neuron.

See also  Jesenické návraty - Městské skály (Šumperk) | Nejnovější zprávy o šumperk výlety

Neuron resting potential mechanism | Nervous system physiology | NCLEX-RN | Khan Academy.

sodno draselná pumpa.

Doufáme, že zde najdete informace související s sodno draselná pumpa užitečný.
Děkujeme za prohlížení tohoto obsahu

Related Posts

27 comments

Adonis Sakellariou 08/09/2021 - 10:44

if the sodium-potassium pump puts 2 potassium ions in and the potassium channels are roughly equal in potassium in and potassium out, what stops the neuron from becoming fuller and fuller of potassium so the membrane potential is constantly changing due the there always being 2 more and 2 more potassium ions being added?

Reply
Jared Jacobs 08/09/2021 - 10:44

Good to a certain extent. I get so lost in the words though. It's really quite annoying. Like the video is annoying and this whole subject is annoying. How do we know all this stuff about neurons anyway???

Reply
Vik M 08/09/2021 - 10:44

the organic anions would not cause a membrane potential since the membrane is impermeable to them

Reply
S G 08/09/2021 - 10:44

At 6:30 he said that no net movment is found, yet he said the action potential is -60mV !! How is this ??

Reply
Mashup by Vishal 08/09/2021 - 10:44

What happen to RMP if intracellular potassium concentration reduce to the value of extracellular potassium concentration?

Reply
Vivian Tristesse 08/09/2021 - 10:44

It's like the Na+/K+ ATPase is an electrolytic cell generating a separation of charges, and the leak channels are galvanic cells driving the free energy change back up to 0.

Reply
Vivian Tristesse 08/09/2021 - 10:44

I think the relevant equation describing actions of electrochemical and chemical potentials is this:
ΔG = ΔG°′ + RT lnQ[Cin]^n/[Cout]^n + nZFΔΨ

Reply
Caroline Victoria 08/09/2021 - 10:44

Omg, thank you so much. I finally feel like I understand this concept. Thank you Khan Academy!

Reply
Jacob L 08/09/2021 - 10:44

Neurons understanding how neurons work.

Reply
Andrew Charlton 08/09/2021 - 10:44

Thanks for the help! Well said 🙂

Reply
Estudiaconmigo Medicina 08/09/2021 - 10:44

Awesome

Reply
刘新英 08/09/2021 - 10:44

How OA-s contribute to RMP if the membrane is not permeable to them ? let's say only OA-s exsit with gradient differnce in bothe sides. With a voltage meter can you measure the " -5mv" out?

Reply
Aishwarya Ghonge 08/09/2021 - 10:44

This is the best video on resting membrane potential- particularly because it explains the mechanism of Nernst potential for all types of ions. Thank you so much for this lucid explanation!

Reply
David Scarpa 08/09/2021 - 10:44

There's a subtitle error in 8:42 in portuguese (Brazil). It says "potássio" instead of "sódio"
Erro de legenda.

Reply
Adam2392 08/09/2021 - 10:44

Isn't the equilibrium potential for Potassium ~-90 mV, derived via Nernst equation?

Reply
Daniel Liu 08/09/2021 - 10:44

Are the leak channels only for K+ to go through? Or can the other ions e.g. OA- go through as well?

Reply
Sha Dow 08/09/2021 - 10:44

thanks a lot u saved me

Reply
Michael Nguyen 08/09/2021 - 10:44

I owe Khan academy my life tbh

Reply
Raina Sajid 08/09/2021 - 10:44

Thanks a bundle :)) It was a lot helpful, this whole membrane potential topic had got me a bit (more than a bit I guess) confused, so thanks again.

Reply
Reem Aldosary 08/09/2021 - 10:44

i did not understand anything :((

Reply
Poke-Fezz 08/09/2021 - 10:44

oh boy, the way you say potassium.

Reply
Natasha 08/09/2021 - 10:44

Nice explanation of how the electrochemical gradient is the combined diffusion and electrical gradient

Reply
Flying Trilobite 08/09/2021 - 10:44

The equilibrium potentials were incorrect. For K+ it is 90 Mv and for Na+ it is 62 mV.

Reply
sweetpicklez 08/09/2021 - 10:44

This perfectly encompassed all the concepts I've been piecing together from lecture notes. No other videos that I could find touch on the specific details this thoroughly. Thank you!

Reply
Colin Hales 08/09/2021 - 10:44

This is great except for one wrong bit of data. The extracellular space ECS is exquisitely small. IT is 40nm-110nm across (20% of tissue volume). 20nm for synapses.  This means that ECS Na+, Cl- and Ca2+ dynamical  scarcity can play a role in action potential dynamics over certain timescales, depending on geometry and activity.  The intracellular space is comparatively huge (80% of tissue volume).

Reply
Emily Shaw 08/09/2021 - 10:44

Great video 😀
… you're not Sal, he gets so damn excited! Its so good to listen too… but still made a good video…
I just think Sal should do them all hahahaha 😀 😛

Reply
SirTyleRey 08/09/2021 - 10:44

I don't like how you say potassium.. Nevertheless, I learned a lot from this. Thanks!

Reply

Leave a Comment